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Ultimate objective: Quantitative and
qualitative determination of
everything we want to know about
molecules and their interactions from
solutions of the Schroedinger (Dirac)
equation.

Includes:

» Structure.

*Vibrational, electronic, photoelectron, ESR,
and NMR spectra.

*Activation barriers and transition states.
*Forces on potential energy surfaces to drive
QM based MD



Cannot do this with sufficient accuracy without
the effects of electron correlation...

TWO ROUTES TOWARD ELECTRON CORRELATION
IN QUANTUM CHEMISTRY

|. Effective one-particle theory:
Density Functional Theory (and others like

Dyson, etc.)

l|. Explicit n-particle (2-particle theory):
Coupled-cluster theory



ROUTE Il. AB INITIO, CORRELATED, SIZE EXTENSIVE WAVEFUNCTION
METHODS COMBINED WITH CONVERGING BASIS SETS HAVE ...

Established the now widely used paradigm for ground
state Ab Initio Calculations---

MBPT(2)<CCD <CCSD<CCSD[T] <CCSD(T) <CCSDT-1

<CCSDT<CCSDT(Qy) <CCSDTQ<CCSDTQP <FULL ClI

Evolving Paradigm for CC/MBPT Approaches for Excited
(lonized, Electron Attached) States ---

EOM-MBPT(2) <EOM-CCSD<STEOM-CC

<EOM-CCSDT-3 <EOM-CCSDT<FULL CI



Performance of theories for the correlation energy in small molecules.
To facilitate comparisons, the ordinate gives the size-scaling parameter
of the approximation, a = a, + an + a; in the computational
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Coupled Cluster Calculation of D,’s
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From K. L. Bak et al., J. Chem. Phys. 112, 9229-9242 (2000)
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Normal distributions of errors in the calculated bond distances
(pm). For ease of comparison, all distributions have been
normalized to one and plotted against the same horizontal and
vertical scales.

Bak. et. al.. JCP (2001)



The alternative to such two-particle theories is an
effective independent particle theory---

hef(1)e,(1) = €, ¢,(1)
Dy =A(94(1) ©2(2)... @,(n))
heff(1)=t(1)+v(1)+J(1)+V, (1)+V (1)

where all essential electron-correlation effects are
hidden into an effective one-particle operator. DFT
formally accomplishes this, along with some other
options.




Correlated one-particle orbital theories have....
*Significant computational advantages

*Applicable to polymers and crystalline solids

*Conceptual advantages (frontier MO theory; energy bands)

*Might expect to get principal ionization potentials and
electron affinities as eigenvalues (band gaps).

Electronic spectra (excitons) should require two-particle
effects, but zeroth-order (one-particle) spectra
can be improved.



Kohn-Sham Density Functional Theory

E=E[p] =E, + E,[p]+ E,;[p]l+ Ex[p]l + Eclp]
Vxc [p] =0Exc [p] / Op
hs @, = (t+v+J+V,() @,

Pexact =2 P; (1)(P*i (1 ,)
Pexact~ Pks = 0 Defines a unique V.

This density condition if the foundation
for ab initio dft



Primary objective of our work in ab initio dft is to

take the best of both worlds, WFT and DFT, and try to

mold them into one superior method for applications to molecules.
DFT does some things well, and WFT does others.

The conceptual model is coupled-cluster theory and its EOM-CC
extensions for excited, ionized, electron-attached states, etc.
Such two-electron methods coupled to converging basis sets
have to converge to the exact solutions of the Schrodinger (Dirac)
equation.

So we have to turn a two-particle theory into a one-particle

one, with its potential computational and conceptual advantages,
while retaining the rigor and convergence to the exact answer of
the two-particle theory? One way is ab initio dft.

The critical quantity is the exchange-correlation potential.



OUTLINE

ADb initio dft: What is it?

How do we rigorously define Vxc?

Form of the exact local exchange potential compared to PBE.
Derivation of Vc, especially the right choice of unperturbed Ho.
Comparisons of Vc from ab initio dft to that from PBE.
Numerical consequences of ab initio dft Vxc compared to
standard DFT & WFT.

* Dispersion interactions.

* Proof of a Koopmans’-like theorem for the eigenvalues in ab
Initio dft . Numerical results.

* Infinite-order generalizations (LCCSD) of MBPT2 functional for
potentials.

 Conclusions



What is attractive about DFT?

All results derive from an observable, the density.
*It is @ one-particle theory that includes electron
correlation.

*Applicable to larger molecules and solids

*Less basis set dependent
It offers an attractive, conceptual foundation for
chemistry.
*Excited states and other properties derive from a one-
particle, TDDFT theory.
*Even poor potentials can often provide relatively good
densities and associated energies. A case in point are

the very successful ‘tack-on’-functionals for correlation.
(Oliphant, RJB, comparison to CCSD(T), JCP, 1995)



What is unattractive about DFT approximations?

*No guaranteed convergence to the right answer.
*No solution of the self-interaction problem.

Causes problems for---
*Anions,

* Photoelectron spectra,
* Rydberg excited states,
* Multiplets,

*Activation barriers.

*No proper inclusion of weak interactions.
All the above depend much more critically on the V-
potential, and associated orbital dependent functionals.



Density Functional Theory (DFT) vs. WavefunctiTn Theory (WFT)

Approximate Approximate

Consistency
Conditions

Failures like Weak
Interactions

<)

E‘g(c[P] Y

Basis Set
and Correlation
Limit

Exact Soln.



So what's the problem?

No one knows what E[p] is.



True, but we do know that

El[p] = E[p(er,)], and that orbital
dependent form is readily given by

Coupled-Cluster theory and its MBPT
approximations.

So we use those.



AB INITIO DFT

E=ET T Eext+ EH T EX+ Ecorr
E=2= <I|h|I>+ = [2<lJ[IJ>-<IJ|JI>]

+ ‘@:I<J,A<B (2<|J|AB>'
<N|BA>)<IJ|AB>/(F- Fo + Fop+ bog) +
2+ |<I|f|A>)?I(F5,-F3, ) +...(Notice we
have a one- and a two-particle
contribution to MBPT(2)+...)



OUR DEFINITION OF AB INITIO DFT

- Energy functional is given by orbital dependent expressions that are known
to be exact through some order (or infinite order) in perturbation theory.
(Implicit dft) WFT

*Potentials are derived from insisting that the exchange-correlation
corrections to the density vanish (the KS condition) DFT

« Convergence to the exact answer in the limit of correlation corrections and
basis set is guaranteed, like ab initio wavefunction methods. WFT

*Potentials (V) are local and multiplicative, as required by dft. DFT

*Potentials are expressed in a basis set of (Gaussian) functions just as in ab
Initio wavefunction methods. There is no numerical integration. WFT

*To make the method practical, it is essential to use elements of GMBPT
(RJB, Review, Modern Electronic Structure, Ed. D. Yarkony, 1995), WFT



If you do everything comparatively right in DFT (ie ab initio
dft)---what have we learned so far?

 Potentials have the correct shell structure and formally
the correct asymptotic behavior.

 Self-interaction is properly handled.

* Dispersion interactions are correctly described.

* DFT orbital energies are given meaning by an analog of
Koopmans’ approximation for all ionization potentials.

* There is no integer discontinuity problem.

* DFT unoccupied orbital energies (€,) enable a
reasonable zeroth-order approximation for excitation
energies to be (e, - €,), as in naive Hueckel theory.

* Results are usually better than that of standard DFT, and
are in many cases competitive with coupled-cluster theory,
even when using only a MBPT(2) functional.

*Using higher-order coupled-cluster functionals further
Improves the potentials, demonstrating convergence.



At convergence, the KS density has to be exact.
In coupled-cluster theory we write it as

p(1) = <0](1+A)exp(-T) 6(x-x,)exp(T)| 0>

<0lexp(Tt) 5(x-x,)exp(T)|0>
pks T A p(1) and impose the condition

Ap(1) =2 @, (1)yp@4(1) = 0, to define V.

This avoids any functional differentiation and is the only
unambiguous way to employ superior separations

to the Hamiltonian other than the standard KS choice, which
Is equivalent to functional differentiation



* To make the connection between WFT and DFT
V¢ Is defined by imposing the condition that the
KS single determinant, ®,g gives the exact p.

This is analogous to other choices for a single
determinant...

* The HF determinant, @ gives the lowest SD
energy

* The first natural determinant, ® gives the best
SD approximation to the density matrix

* The Brueckner determinant, @5 , gives the best
possible SD overlap with the exact wavefunction



Objective is to define u, hg=t+v+u,
u=uM+u+__.

Using the Dirac delta function operator

n/2

Sri—r)) =) o(r; —r)),

we have through first-order in V- A pertubation correction that will
be defined in different ways
Ap) = (Bgs|dRGV|®ks) + c.c.
0 = Y (ilda)(al] — K —li)/ (& — €a) + c.c.

.0

= (ildla)(alVx + Kli)/(e: — €a) + c.c.

1.0

Z ba(r1){a|Vx|i)} (r1)/(ei — €a) = — z $a(r1){al Ki)¢} (r1)/ (i — €a)

This is a pointwise identity.
u(1)=J+VX



It is probably preferable to think of this equation as the solution to a
weighted least squares expression, where we replace the non-local K
with the local Vi, in the space spanned by {¢¥da}. This enables the
complete definition of the operator. Introducing the response function,
X (ry,ra)

6{)(1‘1 ) = / jf(lﬁ \rg)ﬁﬁg(rg)drg

R(rirs) = DIl (6~ ) +CC

fﬁ(I‘l‘rg)[f}x(rg) T f?(rg)]drg =10

X$'x+tK)=0

Vx(fl) = Zﬂu(rlﬂu =gV x
7}

This procedure naturally allows for linear dependency. We
can also remove the virtual orbitals with constant
energy denominator and a closure condition.



Optimized effective potential (OEP)
finds a local effective potential whose corresponding self-
consistent orbitals minimize the Hartree—Fock energy expression.

History
Slater (1951)——the localized HF exchange potential
Sharp & Horton (1953)——the idea & equation

Talman & Shadwick (1976)——the first atom calculations
Krieger, Li, & lafrate (1990)——the KLI approximation to OEP and numerical results

Kotani (1994)——the first crystalline solid calculations

Ivanov, Hirata, & Bartlett (PRL,1999), first finite basis (Gaussian)
Implementation, EXX (Also known as OEP1 from its origin in the first-order
density condition.)

Gorling (1999), different realization of same (EXX) method



Exchange potentials for Neon atom

—

2 3
Distance from the nucleus, Angstrom



Exchange potentials for Argon atom

2 3 4 5
Distance from the nucleus, Angstrom



Exchange potentials for Ca atom

2 3
Distance from the nucleus, Angstrom




SECOND...

LET’S CONSIDER EXACT CORRELATION...



A LITTLE HISTORY OF ‘MANY-BODY THEORY’

INSPIRED CORRELATION POTENTIALS...
Sham-Schluter, PRL 1983. Constant density propagator

approach. Formal.

Gorling-Levy, PRA, IJQC 1993-1996. RSPT at constant density,
subject to KS unperturbed problem. Formal.

Engel,Dreizler, Bonetti, PRL 1998-2001. Numerical calculations
with only doubles part of MBPT(2), not self-consistent.
Grabowski, Hirata, Ivanov, RJB, JCP, 2002. First full, self-
consistent, MBPT(2) ab initio dft results, subject to KS
unperturbed problem.

RJB, Grabowski, Hirata, lvanov, JCP, 2004. Transition from KS
hamiltonian, which usually causes divergence, to well-behaved
GMBPT.

RJB, Lotrich, Schweigert 2005-Special JCP Issue on DFT.
Theory and extensive numerical results of ab initio dft.

RJB, Schweigert, Lotrich 2006-Proceedings WATOC,
Theochem. Other theory and results of ab initio dft.

Bokhan, RJB, 2006, Chem Phys. Letters, Open shells.



In the next (second) order, we have

Ap®) = (@ics[0RoV RoV|®cs)+(Pcs|V RodRoV | @xcs) +(®cs |V RoV Rod| @)

Defines a local, second-order correlation potential to augment Vy,



L arises from corr functional to define, u(?

3" 0t (x1)pa 1) (al@® i) =

a,i

Z‘P i, 1 {aj||cb)(cb||ig) 1 (kj|lib)(ab| kj)
i' al 2 diganthiy 2 dpraptha

—(j|K+Vx|b) (abl|ij)/dijapdia — (aj||ib)(b| K + Vi |j>/djbdm‘ +

1 . il K + Vx|a)(B| K + Vx|d) 1 (ij]|ca){ch||ij
“Z%(l)%(l){“ xtli}él x|)+_2‘<;=(|£|” >é__||3)]
ibia ijacijbe

1 . C(GIK 4+ Vx|a)(a|K + Vx|i) 1 (kj||ab){ab||ki
L5 gty [ LR DR + Dl 1 o)
iallja kjabWikab

X - [ {lf[_ ' ﬂvfii\; |f}3{f;| f;'—frag 1 :' {J .ﬁ'—f"a b :?'f,f!-| ﬁr—l-ﬁr_\' |f :}
DPCICANCN] DIRat i D

a,i - ba J9E3

These two terms only appear for the KS and diagonal Fock partionings.
They are part of the infinite sum in the semi-canonical scheme.

1



Origin of different partitionings...

Inserting the Fock operator written in terms of the KS eigenvalue -

Fr1) = h(ry) +J(r1) — K(r1) = h(r1) + 0ur(r:)
)

h
hs(ry) — Vxe(ry) — K(r

{PEEM) = €plpg + (p|f+f?—|— ﬁmch}}
qu —{pif{ T Vwci'i'):-p 7 q

Il

Our Hamiltonian is,

H = Z(p[ﬂQ){p"q}Jri > (pallrs){p’qtsr} + (0|H|0)

p."q p_-q-r'r,s

= > (lfley{p'a} + W + (0|H]0)

nq



and the one-particle part becomes —

S wlfloiptad = > lep— GIK + Vaelp)l{p'p} — > (0IK + Vaelg){p'q}

P pF

q
Hy(KS) =Y App— Y Apg= Ho(KS) - A
P P#q

V(KS)=W — A

where A distinguishes our approach from standard KS.

H=H,(KS)+V(KS)



Table 1. Total energies(gu))

MAD MP2 OEP2-ks |OEP2-sc |PBE CCSD(T)
(KJ/mol) 58.2 GLPT2 26.7 36.2

N, -109.44914 | -109.74806 |-109.45777 |-109.45707 |-109.46861
N,* |[-108.88633 | No conv -108.90544 | -108.89077 |-108.90055
N -54.544740 |-54.593111 |-54.545199 |-54.535569 |-54.564854
H,O [-76.370003 |-76.510744 |-76.373092 |-76.369991 |(-76.383576
H,O* [-75.901155 |-75.989525 |-75.902958 |-75.912146 |[-75.921765
CN [-92.598196 |No conv -92.651919 |-92.646898 |-92.658287
CN- [-92.772714 | No conv -92.780718 |-92.783715 |-92.796498
CO [-113.22852 |No conv -113.23781 |-113.23959 |-113.25124
CO* [-112.70221 | No conv -112.73481 |-112.72994 | -112.73989
O, -150.20577 | No conv -150.22187 |-150.25505 |-150.22156
Ne |-128.85959 |-128.95144 |-128.86117 |-128.86584 |-128.86513
Ne* |-128.06679 |No conv -128.06757 |-128.06871 |-128.08020




In the KS case A contains a diagonal term, Ay, that is now part of the
perturbation. This is likely to cause problems with convergence. This
choice means that all denominators in the equations above are

composed of KS eigenvalues.

Alternatively, if we make the diagonal f;,, choice

Ho(df) =) (p|flp){p'p}

V(df) :W—Z&Pq

P7Fq

We eliminate the diagonal term and our denominators
dia = (fii — faa) = (& — €a) — ({({{ K + Vxclt) — (a|K + Vxcla)).

H=H,(df)+V/(df)



This third, semi-canonical, choice also addresses part of the A, term,
Apy = Foq{p'a} = fis{i'3} + Ffan{a'b} + Fufati} + fia{ila)

by making a semi-canonical transformation that makes

NN B
LN

| BE—

Then, subject to these new orbtilas —

Ho = Z fopb'D

V= me i+ita) + W

where all of } ,,; A;;j and E azb Dab are now subsummed into Hy.

H=H,(sc)+V(sc)



The partitionings...

*H, (SC) is invariant to any transformation of occupied
or virtual orbitals.

*Diagonal contribution is included to all orders in even
low orders of PT (Fdiag only uses this)

*Third (standard) approximation is to use KS
denominators

Will use three approximations: KS denominators, Fdiag,
SC









What are the possible differences in a second
order calculation?

1. Functional differentiation vs. density condition?

2. Use of just doubles or singles and doubles in

orbital dependent functionals?

3. Whether the determination of V. in an iteration depends only

on Vy, or in general if V(" is determined by

Vo™, Vi o(12), ... That is, whether the potential to be

determined appears on both sides of equation, or just one. Insistence on
a specific order forces the latter..

4. Whether this is done with predetermined KS orbtals,

or fully self-consistently. The latter makes the KS orbitals, functional,
and density consistent to same order.

5. Whether Hy=2¢ *S{p'p}, the KS choice,

or Hy=2f {p'p} + f{ij} + f,,{a'b}, our semi-canoncial choice.

OUR CHOICES, AFTER FIRST PAPER, ARE THE BLUE ONES.
Goerling-Levy, Engel, and Mori-Sanchez... Yang made different choices,
which greatly affects the convergence (and, indeed, even the possibility) for
such a method.



Neon correlation potential
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Correlation potentials for Neon atom
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Calcium correlation potential

0.1 T T ] T ] ] T
— OEP -_MBPT( 2 ks)
0.08 OEP-MBPT(2—fdiag)
—_— OEP_MBPT(2f—sc)
0_0&6
i
0.4
002
—
=
9,
s o
S
—
A
4=
[ |
[ o I
—0.02
— 0.0
—0 .0
—0.08
—0_1 L1 k- E. L '} 2 B
0.5 1 1.5 2 25 3 3 5



Correlation potentials for Ca
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WHAT ABOUT ORBITAL ENERIGES
AND EXCITATION ENERGIES IN
AB INITIO DFT?



Using TDDFT in the adiabatic approximation,

and simply making the assumption that an electron

Is excited into the continuum, subject to a local

kernel and using the fact that all integrals involving
continuum and occupied orbitals vanish from the A and
B matrices, the eigenvalues of the KS equations using
realistic OEP based potentials should approximately
correspond to ionization potentials.

This is a Koopmans’' approximation for KS-DFT that
ascribes meaning to the orbital energies.

RJB, VL, IS, JCP (2005), Special Issue



Comparison of OEP2(sc) Orbital
Energies with IP-EOM-CC, OEPx, HF (eV)

Molecules: NH,;, CH,, CO, N,

OEP2(sc) OEPx HF
Homo 04 0.9 0.8
Homo-1 0.5 0.8 0.9
Homo-2 0.8 0.8 2.6



THERE IS NOTHING KEEPING US FROM COMBINING
THE LOCAL CORRELATION POTENTIAL WITH A HF
SOLUTION, IE ONE THAT USES FULL NON-LOCAL

EXCHANGE.

ADVANTAGES
*The homo condition (ie <h|Vx|h>=-<h|K|h> that is
difficult for OEPXx to satisfy in a basis is bypassed.
*Charge transfer is correctly described in zeroth order in
HF, but not in DFT.

Koopmans’ theorem applies to the HF orbita lenergies.

DISADVANTAGES
OEP-DFT orbitals provide a good zeroth-order
excitation spectrum.
*Potential advantages due to the cancellation between
exchange and correlation do not apply



Principal ionization potentials (eV) of the water molecule estimated from
the occupied orbital energies. The first row gives experimental values (eV)
and the subsequent rows give the deviation from the experimental values
for various methods. IP-EOM-CCSD values are shown for comparison.

HF/ EXX/ HF+EXX/  HF+EXX/ IP-EOM-
IP  Expt. HF EXX HF+EXX

PT2 PT2SC PT2 PT2SC CcsD
bl 12.62 +1.23 -0.63 +1.82  -0.10 +1.52 -1.37 -0.36 -0.11
al 14.74 +1.16 -0.44 +161  -0.15 +1.37 -1.23 -0.29 0.00
b2 18.51 +1.10 -0.21 +145  -0.06 +1.28 -0.97 -0.13 +0.52
al 3261 +4.21 +2.44 0.00 -1.91 +2.10 -0.72 +0.27 +0.06
al 5397 +19.9 +20.8 230 -22.4 -1.6 -0.7 -0.8 +1.7




Principal ionization potentials (eV) of the carbon monoxide molecule estimated
from the occupied orbital energies. The first row gives IP-EOM-CCSD values
(eV) and the subsequent rows give the difference (eV) between these values

and orbital energies for various methods. Uncontracted double-zeta set of
atomic natural orbitals (P.O. Widmark, P.A. Malmqvist, B.O. Roos, Theor.
Chim. Acta 77, 1990) was used as both atomic and potential basis sets.

IP-EOM-CCSD HF EXX EXX-PT2SC HF+EXX+PT2SC
14.17 0.95 0.84 -0.64 0.48
17.02 0.39 0.87 -0.88 -0.07
19.77 2.16 0.87 -1.24 0.50
37.26 4.20 -0.98 -3.55 0.09
297.53 11.63 -18.68 -18.91 -2.61

544.22 18.13 -25.40 -24.73 -1.77




Energy and dipole moment

Method Energy? Dipole®

HF 0.234 0.28
OEP2(KS) |0.104 0.31
OEP2(SC) |0.019 0.15
MBPT(2) 0.022 0.23 (0.13°)
MBPT(4) 0.002 0.13¢
CCSD 0.007 0.11

a Average relative deviation from CCSDT (35 systems)
b Average absolute deviation from experiment, Debye (22 systel
¢ With orbital relaxation effects included



Orbital energies in OEP and

HF
HF
VIRT
RYD OEP
} HF



Estimated Excitation Energies from OEP2(sc) and
OEPXx Orbital Energies (e,- €,) compared to EOM-CC

MOLECULES: H,0O(Rydberg), N, (valence)

OEP2 (sc) MAE=0.66 eV
OEPx MAE=0.93 eV



WHAT ABOUT WEAK INTERACTIONS?

The bane of all dft methods...
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INFINITE ORDER EFFECTS...

All of our expressions for the density and
energies are written in terms of CC
amplitudes.

When we do OEP2sc, we limit ourselves to a
modifed, but second-order approximation.

If we simply replace second-order t by t(*) in
this case, taken from LCCSD, we’re in a
position to explore what happens as we move
to the exact OEP result.



Neon correlation potential
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Beryllium correlation potential
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CONCLUSIONS

*The OEP, ab initio dft, procedure provides a seamless connection between ab
initio correlated WFT and DFT.

*It solves the self-interaction problem, and gives the correct long-range behavior
of Ve,

It provides multiplicative potentials, even though the corresponding orbtial
dependent functional is non-local. We can plot those potentials to see that they
are correct, unlike nearly all other potentials that have been used in standard
DFT methods.

*Using the OEP procedure for correlation and for exchange guarantees that the
potentials match, so our correlation potential is ideally suited to exact local or
non-local exchange. In fact, either (or any combination) is readily accomodated
in a fully self-consistent mode.

*Only such an approach introduces dispersion naturally as an inevitable
consequence of a proper dft calculation, as opposed to being an add-on to the
functional or a post DFT estimate of Cg.

*Hence, ab initio dft should provide seamless results between weak and strong
bonds, ionic and covalent, etc.

*Furthermore, we readily see how to go to any order of PT or to infinite order,
ala CC theory to converge to the full Cl results. (This, of course, is not
recommended!)



CONCLUSIONS (problems?)

Energy functional is 2-particle type, so OEP2-sc just rotates orbitals,
albiet with the right potential. To get the energy, have to evaluate
functional from those OEP2-sc orbitals

1-particle form gives reasonable approximate principal Ip’s, and
excellent zeroth-order electronic excitation spectra, but needs an
extensive basis that can describe the Rydberg orbitals to achieve the
benefits.

The complexity of the OEP2 kernel is excessive, suggesitng that this
is NOT the way to do ab initio dft excited states, but we have done it,
Bokhan, RJB PRA (2006). It is the current benchmark.

TDDFT, and ab initio dft , needs to describe charge-transfer states
even with local potentials.

Computation of OEP2 scales ~n2N3 compared to density fitted DFT
~(n+N)3, except size of effective basis can be smaller for DFT.

Unlike KS DFT, ab initio dft can be extended beyond local potentials,
where extra degree of freedom can be used to improve one-particle
properties other than density, like Ip’s, Ea’s, and energy bands.



Property GGA/Hybrid
Methods

Convergence to Exact Answer No Yes
Correct Self-Interaction No Yes
Correct Behavior of Exchange No Yes
Correct Behavior of Correlation No Yes
Approximation for All lonization Potentials No Yes
Rydberg Excitations No Yes
Potential Energy Curves to Dissociation No (?)
Weak Interactions No Yes







H20: HOMO and LUMO energies

Method E(HOMO), eV |E(LUMO), eV | Gap, eV
HF -13.85 0.81 14.66
HF+OEP2(NLX) -11.77 0.795 12.56
OEPX(SC) -14.42 -5.99 8.43
OEPX+OEP2(SC) |-12.52 -5.58 6.94
EOM-CCSD -12.51(IP) 0.65 (EA) 7.54 (EE)

13.16 (Ip-Ea)
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